
Generating training data for supervised machine learning using GANs
Seminar paper

”Künstliche Intelligenz in RoboCup”

Jan Brehmer

Abstract— A common problem of deep machine learning is
its high demand for training data. Given the recent popularity
of generative adverserial networks (GANs), which are able to
create completely new samples from a learned training dataset
distribution, this work attempts to “just generate some more
training data”. It shows that training a classifier on a GAN-
augmented dataset can exceed the performance of the same
classifier trained on the original dataset exclusively.

I. INTRODUCTION

Deep machine learning has been on an undisputable rise for
the last couple of years, achieving superhuman performance
accross a vast variety of tasks of several domains, e.g. image
recognition and segmentation, speech recognition, reading
comprehension and gaming. [1]

In order to make this possible, new kinds of neural
networks, activation functions, training methods and opti-
mizations have been developed and are still being researched.
However, even the performance of highly sophisticated ma-
chine learning architectures is limited by the amount and
distribution of the provided training data, which has to be
compiled (and labeled) manually – a lengthy and tedious
task, which researchers and users try to avoid.

This problem becomes even more apparent in the con-
text of reinforcement learning, where the training data for
learning a policy has to be gathered by trial and error while
interacting with an environment. Performed in the real world,
this process can be very slow and expensive, since the
physical agent could damage itself while exploring its action
space. Hence, learning in a simulation seems like the obvious
solution. While simulation is broadly used across a variety
of domains with success, often times it is a valid option for
reinforcement learning as well. But again, this simulation
has to be built manually. Sometimes a usable simulation
demands implementing complex interrelations, which should
have been learned by the agent in the first place.

Now given that a reinforcement learning agent alternates
between applying actions to an environment and observing
the environment, we can let it learn its own estimate (“sim-
ulation”) of the environment using (environment,action)→
environment′ mappings as training data. This can be done
additionally to learning the policy, but without the need
for additional interactions with the environment. Using the
learned model of the environment to train the policy on
imagination rollouts (virtual training runs) can substantially
improve learning speed. [2, 3]

Reinforcement learning has also coined the term sample
efficiency for learning speed, i.e. the fewer environment
interactions are neccessary to achieve a certain level of
performance, the more sample efficient a model is. This is
not to be confused with the maximum performance capacity
of a model, which is the upper limit of what the model is
capable of (given infinite training samples). In the case of
neural networks the model capacity usually increases with
the number and widths of layers. The model capacity is not
improved by the use of imagination rollouts.

In image-based machine learning such as image classifi-
cation, training datasets may be enriched by image transfor-
mations, such as rotation, reflection and scaling. [4]

This work attempts to apply GANs (see sections II “Model
Overview” and III “Learning”) on an image training dataset
to learn to generate additional samples, similar to model-
based reinforcement learning. These generated samples are
used for training of a baseline classifier among the original
samples to increase the classifier accuracy.

This is a relatively new approach, as interest in GANs has
risen only over the last few years. However, similar research
is already available: In [5] a simulator is used to generate
labeled image data, while GANs are trained on unlabeled
real data to improve the realism of the generated output.
And in [6] GANs are trained on unlabeled image data of a
person re-identification problem, generating person mixture
images. These images are fed into classifier training along
a uniformly distributed person vector, which increases the
classifier accuracy.

II. MODEL OVERVIEW

The neural network setup used for experiments consists of
a convolutional neural network (CNN) classifier and two
GANs. To specify a networks’ architecture the following
notation is used.
CN,w,s, fa denotes a convolutional layer with N kernels of

size w×w, stride s and an activation function fa, where
lReLU is the leaky rectified linear unit. FN, fa denotes a fully
connected layer with N neurons and an activation function
fa. D denotes a dropout layer with a dropout rate of 0.5. B
denotes a batch normalization layer with a moving average
momentum of 0.99.

GANs have two components: a generator and a dis-
criminator. Both GANs’ discriminator networks and the
classifier are designed to process 64×64 pixel RGB im-



ages. Their network architecture has the following layers:
C256,4,2,lReLU → C512,4,2,lReLU → D→ B→ C1024,4,2,lReLU →
D → B → C2048,4,2,lReLU → D → B → F400,lReLU → D →
F1,sigmoid→D.

The GANs’ generator networks are arranged symmetri-
cally to their discriminator counterparts and output 64×
64 pixel RGB images respectively. The inputs are nor-
mally distributed random vectors of length 100. Their ar-
chitecture consists of the following layers: F400,lReLU →
D→ B→ F32768,lReLU→ D→ B→ CT

1024,4,2,lReLU→ D→
B → CT

512,4,2,lReLU → D → B → CT
256,4,2,lReLU → D → B →

CT
3,4,2,tanh.
Note that the convolution layers are transposed in the

generators, which is also called deconvolution. To feed in
the output of a fully connected layer to a (de)convolution
layer or vice versa, the matrices are reshaped accordingly, so
e.g. the 32768 values long output vector of the generators’
second FC layer is reshaped to 2048 kernels of size 4×4.

III. LEARNING

A GAN is a network pair that learns a model of the input
data. Each generated sample mimics the learned input data.
To achieve that, a discriminator network is trained to classify
real and generated samples. Assuming the discriminator
returns the probability pr of the input image being real, the
loss function used for training on real images is

Lr =−pr

and when training on generated (fake) images it is

L f = pr.

The loss used to train the generator network is based on the
discriminator output when feeding it a generated image:

L =−pr

That way the discriminator gets better on identifying gen-
erated images and the generator is trained to create images,
which the discriminator classifies as being real.

(a) (b)

Fig. 1: A sample from each class to learn: a) ball and b)
robot.

In the experiment a CNN classifier is trained on a dataset
of robot and ball images (fig. 1) as a baseline over 350
episodes. Only n = 10 images are used per class1, so batch

1The CNN reaches near-perfect accuracy using 30+ training samples,
n = 10 yields a comparable baseline.

size is set to n−1= 9, which yields a maximum of 10 distinct
batches when rotating over the training data. To generate
more training data for the classifier, two GANs are trained on
the same 10 images over 1500 episodes: one for robot images
and one for ball images. Again, the batch size is n−1 = 9.
Figure 2 shows a few examples of generated images.

Fig. 2: Typical GAN output images. Left half: GAN trained
on ball images. Right half: GAN trained on robot images.

The generated images are then used for classifier training
either by alternating original and generated image batches or
by using mixed batches.

IV. RESULTS

For evaluation, the classifier accuracy is used as the measure
of performance. It is evaluated on a test data set every 5
episodes during classifier training. Each evaluation averages
several distinct training runs (mostly 20) with a randomly
selected training data set, using the rest of the images as the
test data set.

As a first result, the experiments show that training on
mixed batches is superior to alternating batches, as the
average classifier accuracy was higher at each episode check-
point.

The main insight is however, that adding the generated
images to the training data increases accuracy growth early
in the training process and even leads to a more accurate
classifier after all (fig. 3).

For further comparison, random normally-distributed pixel
arrays were used to augment training instead of the GAN-
generated images. This method has shown to be of great
benefit in the early episodes, but hindered the training later
on, not improving the final classifier accuracy.

After 20 training runs each, the average accuracy was 0.85
for the baseline classifier trained only on the original images,
0.86 for the noise-augmented training data set and 0.88 for
the GAN-augmented training data set.

Further findings strongly suggest that using GAN-
augmented training data also provides the most stable results.



0 50 100 150 200 250 300 350
batches trained

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

regular
+GAN
+noise

Fig. 3: Classifier accuracy progression while learning on the
given training data (blue), additionally using GAN-generated
images (yellow) or noise (red), averaged over 20 training runs
each, with standard errors.

TABLE I shows the standard deviation of the accuracy for
all three training variants over 20 runs each as an average
across all training checkpoints and the individual standard
deviation at the last checkpoint.

regular +GAN +noise
mean 0.0593 0.0525 0.0631
final 0.0563 0.0412 0.0442

TABLE I: Classifier accuracy standard deviations during and
after training.

When used in an actual attempt to augment training data,
manual GAN selection could be applied additionally, i.e. dis-
carding poor GANs after visually checking their outputs. It
was found that this would further increase classifier accuracy,
but because of the lack of an objective selection metric this
method was considered unsuitable for actual evaluation.

V. CONCLUSION

Having decent success with very basic GANs on a simple
classifying task by improving performance and robustness,
this work implies a rather high potential of GAN-augmenting
training data, especially when dealing with sparse training
data while having some spare computation power.

In future work, more advanced GAN aritectures could
be evaluated along with a harder classification tasks, which
would need more original training data to provide a compara-
ble baseline, since training on 10 images is fairly uncommon
and only allows for very small batches.

Another thread of research would be merging each class’
GAN into one by supplementing the class label to the
generator’s input, or even skipping actual classifier training
at all by making the GAN discriminator estimate the class.

REFERENCES

[1] P. Eckersley, Y. Nasser et al., “EFF AI Progress Measurement Project,”
https://www.eff.org/de/ai/metrics, 2017–, accessed 2019-04-20.

[2] N. Wahlström, T. B. Schön, and M. P. Deisenroth, “From Pixels to
Torques: Policy Learning with Deep Dynamical Models,” ArXiv e-
prints, Feb. 2015.

[3] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous Deep Q-
Learning with Model-based Acceleration,” in International Conference
on Machine Learning, 2016, pp. 2829–2838.

[4] P. Y. Simard, D. Steinkraus, J. C. Platt et al., “Best Practices for
Convolutional Neural Networks Applied to Visual Document Analysis.”
in Icdar, vol. 3, no. 2003, 2003.

[5] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from Simulated and Unsupervised Images through Adversar-
ial Training,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 2107–2116.

[6] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled Samples Generated
by GAN Improve the Person Re-identification Baseline in vitro,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 3754–3762.

https://www.eff.org/de/ai/metrics

	Introduction
	Model Overview
	Learning
	Results
	Conclusion

